Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Pathogens ; 11(4)2022 Apr 09.
Article in English | MEDLINE | ID: covidwho-1785867

ABSTRACT

The outbreak of the coronavirus disease 2019 (COVID-19) raises questions about the effective inactivation of its causative agent, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in medical wastewater by disinfectants. For this reason, our study of wastewater from a selected hospital evaluated several different advanced oxidation methods (Fenton reaction and Fenton-like reaction and ferrate (VI)) capable of effectively removing SARS-CoV-2 RNA. The obtained results of all investigated oxidation processes, such as ferrates, Fenton reaction and its modifications achieved above 90% efficiency in degradation of SARS-CoV-2 RNA in model water. The efficiency of degradation of real SARS-CoV-2 from hospital wastewater declines in following order ferrate (VI) > Fenton reaction > Fenton-like reaction. Similarly, the decrease of chemical oxygen demand compared to effluent was observed. Therefore, all of these methods can be used as a replacement of chlorination at the wastewater effluent, which appeared to be insufficient in SARS-CoV-2 removal (60%), whereas using of ferrates showed efficiency of up to 99%.

2.
Front Immunol ; 13: 821007, 2022.
Article in English | MEDLINE | ID: covidwho-1775665

ABSTRACT

Despite ongoing vaccination COVID-19 is a global healthcare problem because of the lack of an effective targeted therapy. In severe COVID-19 manifesting as acute respiratory distress syndrome, uncontrolled innate immune system activation results in cytokine deregulation, damage-associated molecular patterns release upon tissue damage and high occurrence of thrombotic events. These pathomechanisms are linked to neutrophil function and dysfunction, particularly increased formation of neutrophil extracellular traps (NETs). While the association of NETs and severity of COVID-19 has been shown and proved, the causes of NETs formation are unclear. The aim of this review is to summarize potential inducers of NETs formation in severe COVID-19 and to discuss potential treatment options targeting NETs formation of removal.


Subject(s)
COVID-19 , Extracellular Traps , Respiratory Distress Syndrome , Humans , Neutrophils , SARS-CoV-2
3.
J Water Process Eng ; 43: 102223, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1386151

ABSTRACT

Waterborne pathogens including viruses, bacteria and micropollutants secreted from population can spread through the sewerage system. In this study, the efficiency of unique effervescent ferrate-based tablets was evaluated for total RNA and DNA removal, disinfection and degradation of micropollutants in hospital wastewater. For the purpose of testing, proposed tablets (based on citric acid or sodium dihydrogen phosphate) were used for various types of hospital wastewater with specific biological and chemical contamination. Total RNA destruction efficiency using tablets was 70-100% depending on the type of acidic component. DNA destruction efficiency was lower on the level 51-94% depending on the type of acidic component. In addition, our study confirms that effervescent ferrate-based tablets are able to efficiently remove of SARS-CoV-2 RNA from wastewater. Degradation of often detected micropollutants (antiepileptic, antidepressant, antihistamine, hypertensive and their metabolites) was dependent on the type of detected pharmaceuticals and on the acidic component used. Sodium dihydrogen phosphate based tablet appeared to be more effective than citric acid based tablet and removed some pharmaceuticals with efficiency higher than 97%. Last but not least, the disinfection ability was also verified. Tableted ferrates were confirmed to be an effective disinfectant and no resistant microorganisms were observed after treatment. Total and antibiotic resistant bacteria (coliforms and enterococci) were determined by cultivation on diagnostic selective agar growth media.

4.
Journal of Environmental Chemical Engineering ; : 105746, 2021.
Article in English | ScienceDirect | ID: covidwho-1253178

ABSTRACT

Wastewaters are considered a remarkable source of micropollutants capable of influencing the environment both directly and indirectly. Here we tested porous ecological carbon (Biochar), an effective sorbent material for removing pharmaceuticals, drugs, and their metabolites found in wastewaters. The tested Biochar type was first characterised and used for adsorption experiments of selected micropollutants from a municipal WWTP (wastewater treatment plant) effluent sample. The sorption efficiency was studied on selected pharmaceuticals due to their common presence in aquatic ecosystems. The results show that the studied Biochar type removed the pharmaceuticals with high efficiency (above 90%), so this material can potentially be applied in wastewater treatment. We achieved greater than 99% efficiency in total RNA removal from wastewater. Wastewater might contain infectious RNA fragments of the SARS-CoV-2 virus. However, Biochar can be used as a sorbent in wastewater treatment to remove antibiotic resistance genes. We have also observed a total DNA removal ability of Biochar. On the other hand, the total number and antibiotic-resistant coliform bacteria and enterococci were not changed after Biochar wastewater treatment.

5.
Microb Biotechnol ; 14(4): 1627-1641, 2021 07.
Article in English | MEDLINE | ID: covidwho-1228701

ABSTRACT

Virus detection methods are important to cope with the SARS-CoV-2 pandemics. Apart from the lung, SARS-CoV-2 was detected in multiple organs in severe cases. Less is known on organ tropism in patients developing mild or no symptoms, and some of such patients might be missed in symptom-indicated swab testing. Here, we tested and validated several approaches and selected the most reliable RT-PCR protocol for the detection of SARS-CoV-2 RNA in patients' routine diagnostic formalin-fixed and paraffin-embedded (FFPE) specimens available in pathology, to assess (i) organ tropism in samples from COVID-19-positive patients, (ii) unrecognized cases in selected tissues from negative or not-tested patients during a pandemic peak, and (iii) retrospectively, pre-pandemic lung samples. We identified SARS-CoV-2 RNA in seven samples from confirmed COVID-19 patients, in two gastric biopsies, one small bowel and one colon resection, one lung biopsy, one pleural resection and one pleural effusion specimen, while all other specimens were negative. In the pandemic peak cohort, we identified one previously unrecognized COVID-19 case in tonsillectomy samples. All pre-pandemic lung samples were negative. In conclusion, SARS-CoV-2 RNA detection in FFPE pathology specimens can potentially improve surveillance of COVID-19, allow retrospective studies, and advance our understanding of SARS-CoV-2 organ tropism and effects.


Subject(s)
COVID-19 , RNA, Viral/isolation & purification , SARS-CoV-2 , COVID-19/diagnosis , Diagnostic Tests, Routine , Humans , Pandemics , Retrospective Studies
6.
Microb Biotechnol ; 14(1): 307-316, 2021 01.
Article in English | MEDLINE | ID: covidwho-1048485

ABSTRACT

In the fight against the recent COVID-19 pandemics, testing is crucial. Nasopharyngeal swabs and real-time RT-PCR are used for the detection of the viral RNA. The collection of saliva is non-invasive, pain-free and does not require trained personnel. An alternative to RT-PCR is loop-mediated isothermal amplification coupled with reverse transcription (RT-LAMP) that is easy to perform, quick and does not require a thermal cycler. The aim of this study was to test whether SARS-CoV-2 RNA can be detected directly in saliva using RT-LAMP. We have tested 16 primer mixes from the available literature in three rounds of sensitivity assays. The selected RT-LAMP primer mix has a limit of detection of 6 copies of viral RNA per reaction in comparison with RT-PCR with 1 copy per reaction. Whole saliva, as well as saliva collected using Salivette collection tubes, interfered with the RT-LAMP analysis. Neither Chelex-100 nor protease treatment of saliva prevented the inhibitory effect of saliva. With the addition of the ribonuclease inhibitor, the sensitivity of the RT-LAMP assay was 12 copies per reaction of RNA in Salivette® saliva samples and 6 copies per reaction of RNA in whole saliva samples. This study shows that it is possible to combine the use of saliva and RT-LAMP for SARS-CoV-2 RNA detection without RNA extraction which was confirmed on a small set of correctly diagnosed clinical samples. Further studies should prove whether this protocol is suitable for point of care testing in the clinical setting.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , SARS-CoV-2/isolation & purification , Saliva/virology , Humans , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL